

2022 Annual Drinking Water System Report

Port Dover Drinking Water System

1. Introduction

The Corporation of Norfolk County has prepared this report to satisfy the requirements of Section 11 of Ontario Regulation (O. Reg.) 170/03. This annual report must be prepared no later than February 28 of each year.

This report covers the period from January 1, 2022 to December 31, 2022, and the information provided complies with the reporting requirements of O. Reg. 170/03 Section 11.

A summary of Port Dover's Municipal Drinking Water System is outlined below:

Drinking Water System Number: 220000399

Drinking Water System Name: Port Dover Drinking Water System

Drinking Water System Owner: Corporation of Norfolk County

Drinking Water System Category: Large Municipal Residential

2. Reporting Requirements under Section 11 – O. Reg. 170/03

Section 11 requires that the report include the following information relating to the period covered by the report. This includes:

- A statement of where a report prepared under Schedule 22 will be available for inspection by any member of the public during normal business hours without charge.
- A brief description of the drinking water system, including a list of water treatment chemicals used.
- Any major expenses incurred to install, repair or replace required equipment.

- A summary of any reports made to the Ministry of Environment, Conservation and Parks (MECP) for Adverse Water Quality Incidents (AWQI's).
- A summary of the results of tests performed under O. Reg. 170/03, an approval, the municipal drinking water licence or an order, including an Ontario Water Resources Act (OWRA) order.
- To describe any corrective actions taken

3. Evidence of Compliance

Availability of the Annual Report

In accordance with Section 11 O. Reg. 170/03, a copy of the annual report will be posted for each system by the end of February each year on the Norfolk County web site at norfolkcounty.ca. A Summary Report on regulatory compliance is required annually under Schedule 22 of Regulation 170/03 for each municipal drinking water system. This report summarizes any known failures to meet the requirements of the Safe Drinking Water Act, its duration and corrective measures. The reports are presented to Norfolk County Council for acceptance before March 31st each year. The reports are made available to the public in April on the Norfolk County web site noted above or by request from the Environmental Services Department. A copy of the annual report is available to the public, free of charge at the following locations as well:

185 Robinson St., Simcoe, ON

Description of the Municipal Drinking Water System

The Port Dover Drinking Water System supplies drinking water to the community of Port Dover. The drinking water system currently serves a population of approximately 7,800. The Port Dover water treatment plant is fed from a surface water source, which is Lake Erie. The water enters a 500mm intake pipe that is located approximately 450m offshore in about 4.3m of water.

The water distribution system includes a 5,000 m3 elevated tank, which acts as a reservoir when the system requires larger amounts of water than the water treatment plant can supply (such as firefighting and peak flows) and also helps to maintain a constant system pressure. There are approximately 390 fire hydrants and approximately 66,300 meters of water main and transmission main ranging in size from 150 mm to 400mm in diameter. The piping material consists of cast iron, Polyvinyl Chloride (PVC) and ductile iron pipe.

Water Treatment Chemicals

The following water treatment chemicals were used during the reporting period:

- Sodium Hypochlorite
- Carbon Dioxide
- Poly Aluminum Chloride

Significant Expenses Incurred

A brief summary of the major expenses incurred during the reporting period to install, repair or replace required equipment, and value of each, is included in Table 1.

Table 1 – Summary of Expenses Incurred

Activity	Cost Incurred (2022)
Port Dover Clarifier Upgrades	\$1,843,630.00
General Operations Maintenance and Repair in Water Treatment Plant and Distribution System	\$92,300.00
Replacement of Watermains	\$156,600.00

4. Microbiological Testing

E. coli and Total Coliform

As per Schedule 10 of O. Reg. 170/03 – Microbiological Sampling and Testing, bacteriological tests for E. coli and total coliforms were performed weekly on the raw and treated water at the facilities and in the distribution system. The results from the 2022 sampling program for the Port Dover Drinking Water are shown in the table below.

Location	Number of Samples	Range of E.coli Or Fecal Results (min #)-(max #)	Range of Total Coliform Results (min #)-(max #)
Raw	52	0 - 700	0 - 3400
Treated	52	0 - 0	0 - 0
Distribution	234	0 - 0	0 - 0

Heterotrophic Plate Count (HPC)

As per Schedule 10 of O. Reg. 170/03 - Microbiological Sampling and Testing, HPC analyses are required from the treated and distribution water. HPC tests are required weekly for treated water and for twenty five percent of the required distribution system bacteriological samples. Results over 500 colonies per 1 mL may indicate a change in water quality but is not considered an indicator of unsafe drinking water. The results from the 2022 HPC sampling program for the Port Dover Drinking Water System are shown in the table below.

Location	Number of Samples	Number of HPC Samples	Range of HPC Results (min #)-(max #)
Treated	52	52	0 - 2000
Distribution	233	69	0 - 50

5. Chemical Testing

The Safe Drinking Water Act requires periodic testing of the water for sixty different chemical parameters. The latest results for these parameters are provided in Appendix A. The sampling frequency varies for the different types of water systems. If the concentration of the parameter is found to be above half of the Maximum Allowable Concentration (MAC) under the Ontario Drinking Water Quality Standards, an increased testing frequency of once every three months is required by Regulation. No additional testing is required for the Port Dover Drinking Water System.

6. Operational Monitoring

Operational checks including raw and treated water turbidity and treated and distribution free chlorine were conducted in accordance with Schedule 7 of Reg. O. 170/03.

Turbidity

The turbidity of the treated water is monitored continuously at each treatment plant; the turbidity of the raw water is checked on a weekly basis. Turbidity is measured in Nephelometric Turbidity Units (NTU). A summary of the 2022 turbidity monitoring results are provided in the table below.

Location	Number of Grab Samples	Range of Results	Unit of Measure
GE Plant Outlet Turbidity	8760	0.026 - 0.99	NTU
Filter One Turbidity	975	0.062 - 0.71	NTU
Filter Two 964 Turbidity		0.063 – 1.99	NTU
Filter Three Turbidity	977	0.051 – 1.99	NTU

Chlorine Residual

In accordance with Schedule 7 of O. Reg. 170/03, free chlorine residuals in the treated water are monitored continuously at the point of entry to the distribution system at all water treatment plants and wells. The free chlorine in the water distribution system must be above 0.05 mg/L, if it is below this, it must be reported and corrective actions taken. The results from the 2022 chlorine residual monitoring program for the Port Dover Drinking Water System are shown in the table below.

Location	Number of Grab Samples	Range of Results	Unit of Measure
Chlorine	8760	0.62 - 2.23	mg/L
Chlorine Residual Distribution System	602	0.02 – 1.84	mg/L

7. Adverse Results

In accordance with Schedule 16 – Reporting of Adverse Test Results and Other Problems of O. Reg. 170/03, there was one Adverse Water Quality Incident (AWQI) issued for the Port Dover Drinking Water System. The following table describes the date the adverse occurred, the parameter, the result, the corrective action taken and the corrective action date.

Incident Date	Parameter	Result	Corrective Action	Corrective Action Date
	Less than	<0.05	Distribution system was flushed	26/07/2022
20/09/2022 29/09/2022	0.05 mg/L chlorine		until residual was restored. Results were within the Ministry of the	27/09/2022 29/09/2022
2010012022	residual in		were within the willingtry of the	23/03/2022

Incident Date	Parameter	Result	Corrective Action	Corrective Action Date
	the distribution system		Environment Guidelines. No further action was required.	

APPENDIX A: SUMMARY OF CHEMICAL RESULTS UNDERSTANDING CHEMICAL TEST RESULTS

The following tables summarize the laboratory results of the chemical testing Norfolk County is required to complete. Different parameters are required to be tested for at different frequencies as noted below. Results are shown as concentrations with units of either milligrams per litre (mg/L) or micrograms per litre (ug/L). 1 mg/L is equal to 1000 ug/L. The Maximum Acceptable Concentration (MAC) is the highest amount of a parameter that is acceptable in Municipal drinking water and can be found in the MECP Drinking Water Standards. The Method Detection Limit (MDL) is the lowest amount to which the laboratory can confidently measure. There was no additional testing or sampling carried out in accordance with the requirement of an approval, order or other legal instrument.

The following tables summarize the Inorganic parameters tested for during the reporting period or the most resent sample results for the Port Dover Drinking Water System.

Port Dover Filtration Plant

Parameter	Sample Date	Result Value	Unit of Measure	Exceedance
Antimony	16/05/2022	0.6 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Arsenic	16/05/2022	0.9	ug/L	No
Barium	16/05/2022	22.9	ug/L	No
Boron	16/05/2022	18	ug/L	No
Cadmium	Cadmium 16/05/2022		ug/L	No
Chromium	16/05/2022	0.20	ug/L	No
Lead	Exempt			
Mercury	Mercury 16/05/2022		ug/L	No
Selenium	Selenium 16/05/2022		ug/L	No
Sodium	Sodium 16/05/2022		mg/L	No
Fluoride	16/05/2022	0.12		
Uranium	16/05/2022	0.404	ug/L	No
Nitrite	14/02/2022	0.003 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No

Parameter	Sample Date	Result Value	Unit of	Exceedance
			Measure	
	16/05/2022	0.003 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
	15/08/2022	0.003 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
	07/11/2022	0.003 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Nitrate	14/02/2022	0.542	ug/L	No
	16/05/2022	0.255	ug/L	No
	15/08/2022	0.095	ug/L	No
	07/11/2022	0.160	ug/L	No

The following tables summarize the Organic parameters tested for during the reporting period or the most resent sample results for the Port Dover Drinking Water.

Port Dover Filtration Plant

Parameter	Sample Date	Result Value	Unit of Measure	Exceedance
Alachlor	16/05/2022	0.06	ug/L	No
Atrazine + N-	16/05/2022	0.05	ug/L	No
dealkylated				
metobolites				
Azinphos-methyl	16/05/2022	0.05 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Benzene	16/05/2022	0.32 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Benzo(a)pyrene	16/05/2022	0.004 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Bromoxynil	16/05/2022	0.33 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Carbaryl	16/05/2022	0.05 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Carbofuran	16/05/2022	0.01 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Carbon	16/05/2022	0.17 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Tetrachloride				
Chlorpyrifos	16/05/2022	0.02 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Diazinon	16/05/2022	0.02 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Dicamba	16/05/2022	0.20 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
1,2-	16/05/2022	0.41 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Dichlorobenzene				
1,4-	16/05/2022	0.36 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Dichlorobenzene				
1,2-Dichloroethane	16/05/2022	0.35 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
1,1-	16/05/2022	0.33 <mdl< th=""><th></th><th></th></mdl<>		
Dichloroethylene				
(vinylidene chloride)				
Dichloromethane	16/05/2022	0.35 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
2-4 Dichlorophenol	16/05/2022	0.15 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No

Parameter	Sample Date	Result Value	Unit of	Exceedance
			Measure	
2,4-	16/05/2022	0.19 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Dichlorophenoxy				
acetic acid (2,4-D)				
Diclofop-methyl	16/05/2022	0.40 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Dimethoate	16/05/2022	0.06 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Diquat	16/05/2022	1 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Diuron	16/05/2022	0.03 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Glyphosate	16/05/2022	1 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Malathion	16/05/2022	0.02 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
MCPA	16/05/2022	0.00012	mg/L	No
		<mdl< th=""><th></th><th></th></mdl<>		
Metolachlor	16/05/2022	0.02	ug/L	No
Metribuzin	16/05/2022	0.02 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Monochlorobenzene	16/05/2022	0.3 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Paraquat	16/05/2022	1 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Pentachlorophenol	16/05/2022	0.15 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Phorate	16/05/2022	0.01 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Picloram	16/05/2022	1 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Polychlorinated	16/05/2022	0.04 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Biphenyls(PCB)				
Prometryne	16/05/2022	0.03 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Simazine	16/05/2022	0.01 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Terbufos	16/05/2022	0.01 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Tetrachloroethylene	16/05/2022	0.35 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
2,3,4,6-	16/05/2022	0.20 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Tetrachlorophenol				
Triallate	16/05/2022	0.01 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Trichloroethylene	16/05/2022	0.44 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
2,4,6-	16/05/2022	0.25 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Trichlorophenol				
Trifluralin	16/05/2022	0.02 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Vinyl Chloride	16/05/2022	0.17 <mdl< th=""><th>ug/L</th><th>No</th></mdl<>	ug/L	No
Total Haloacetic	14/02/2022	11.8	ug/L	No
Acid	16/05/2022	33.1	ug/L	
Average below	15/08/2022	25.7	ug/L	
detection 24.0 ug/L	07/11/2022	25.4	ug/L	
THM Annual	14/02/2022	24	ug/L	No
Average 43 ug/L	16/05/2022	56	ug/L	
	15/08/2022	48	ug/L	
	07/11/2022	44	ug/L	

Microcystin Sample Results

Parameter	Sample Date	Raw Water Results	Treated Water Results	Unit of Measure	Exceedance
Microcystin	06/07/22 06/14/22 06/21/22 06/28/22 07/05/22 07/12/22 07/19/22 07/26/22 08/02/22 08/09/22 08/30/22 08/30/22 09/06/22 09/20/22 09/27/22 10/04/22 10/11/22 10/18/22	0.1 <mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl< th=""><th>0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl< th=""><th>Ug/L</th><th>No</th></mdl<></mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </th></mdl<></mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl 	0.1 <mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl 0.1<mdl< th=""><th>Ug/L</th><th>No</th></mdl<></mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl 	Ug/L	No

The following table summarizes the lead testing as set out in Schedule 15.1 of O. Reg. 170/03 during the reporting period.

Location Type	Sample Date	Number of Samples	Range of Lead Results (min#) – (max #) ug/L	Number of Exceedances
Plumbing		Exempt		
Distribution		None. Next required sampling is Spring 2024.		